Max Sum of Max-K-sub-sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 4913 Accepted Submission(s): 1791
Problem Description
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1]. Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
Sample Input
4 6 3 6 -1 2 -6 5 -5 6 4 6 -1 2 -6 5 -5 6 3 -1 2 -6 5 -5 6 6 6 -1 -1 -1 -1 -1 -1
Sample Output
7 1 3 7 1 3 7 6 2 -1 1 1
#include <iostream> #include <cstdio> #include <cstring>using namespace std; int a[222222],sum[222222]={ 0},que[222222]; int main (void) { int t,n,m,s,i,j,k,l,max,aa,ss,qian,hou;
scanf("%d",&t); while(t--&&scanf("%d%d",&n,&m)) { for(i=1;i<=n;i++) scanf("%d",&a[i]),a[n+i]=a[i]; for(i=1,sum[0]=0;i<=n+m;i++) sum[i]=sum[i-1]+a[i]; //把总和记录下来 max=-1000000,aa=ss=qian=hou=0; for(i=1;i<n+m;i++) { while(qian<hou&&sum[i-1]<sum[que[hou-1]])hou--; //保持单调 que[hou++]=i-1; while(qian<hou&&i-que[qian]>m)qian++; //保持长度 if(sum[i]-sum[que[qian]]>max) { max=sum[i]-sum[que[qian]]; aa=que[qian]+1;ss=i; } } if(aa>n)aa-=n; if(ss>n)ss-=n; printf("%d %d %d\n",max,aa,ss); } return 0; }